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We compare the results of six models on a data set where pregnant dams were randomised to treatment
groups but observations were made on the offspring.

Load packages and set options

library(nlme)
library(lattice)
suppressMessages(library(dplyr))
suppressMessages(library(rstanarm))
options(mc.cores = parallel::detectCores())

This example uses the VPA data set from the labstats R package. In this experiment, six pregnant female
mice were randomly assigned to receive an injection of valproic acid (VPA, n = 3) or saline (n = 3) and the
outcome variable was the amount of locomotor activity in the offspring. Since the measurements are taken on
the offspring, they are the observational units (OU). The research hypothesis is whether prenatal exposure to
VPA affects locomotor activity in the offspring, and so the offspring are also the biological units (BU). But
since the dams (litters) were randomised to the treatment conditions, the experimental units (EU) are the
dams and sample size is therefore the number of dams (N = 6). A subset of the full data set is used here to
simplify the analysis and so one experimental condition was dropped and only two offspring from each litter
are used. The data are originally from Mehta et al. [1].

data("VPA", package="labstats")

d <- filter(VPA, drug == "SAL") %>% # select only SAL drug group
mutate(act = activity/10000) %>% # put on nice scale for plotting
select(litter, group, act) %>% # select key variables
arrange(litter) # order by litter

# the data used for this example
d

litter group act
1 C SAL 6.7752
2 C SAL 4.9948
3 D SAL 6.5769
4 D SAL 8.1351
5 E SAL 5.8470
6 E SAL 5.9803
7 H VPA 4.5258
8 H VPA 5.3587
9 I VPA 5.4880
10 I VPA 5.3566
11 J VPA 5.6953
12 J VPA 5.0725
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The plot below shows the activity by litter.

par(las=1)
beeswarm::beeswarm(act ~ litter, data=d, ylim=c(2,10),

pwpch=as.numeric(group), pwcol=as.numeric(group),
ylab="Activity (x10000)",
xlab="Litter")

legend("topright", pch=1:2, col=c("black","red"), legend=c("SAL","VPA"))
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Analysis 1: Pseudoreplication when treating offspring as the EUs

The analysis below analyses all 12 observations, not taking into account that two animals come from each
litter and so the number of OUs is twice the number of EUs. Hence, the analysis has an artificially inflated
sample size and p-values that are too small.

m1 <- aov(act ~ group, data=d)
summary(m1)

Df Sum Sq Mean Sq F value Pr(>F)
group 1 3.87 3.87 5.98 0.035
Residuals 10 6.47 0.65

The p-value is less than 0.05 and we would conclude that VPA has an effect, but residual degrees of freedom
(df) are 10 (shown in the Df column). Since the residual df cannot be larger than the sample size (the number
of EUs), it is obvious that the analysis is inappropriate.

Analysis 2: No pseudoreplication, the correct EU is specified with
“Error()”

The analysis below uses the Error() argument to specify that the litters are the EUs, and litter is treated as
a fixed effect in this analysis.
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m2 <- aov(act ~ group + Error(litter), data=d)
summary(m2)

Error: litter
Df Sum Sq Mean Sq F value Pr(>F)

group 1 3.87 3.87 4.97 0.09
Residuals 4 3.11 0.78

Error: Within
Df Sum Sq Mean Sq F value Pr(>F)

Residuals 6 3.36 0.56

There are two tables in the above output Error: litter and Error: Within. The group variable is found
in the Error: litter table and has a p-value of 0.09. Unlike the above analysis we would not conclude that
there was an effect of VPA (assuming we are making a hard cutoff at p = 0.05). Note that the residual df in
the Error: litter is less than the number of EUs, indicating that there is no pseudoreplication.

Analysis 3: No pseudoreplication, treating litter as a random effect

Another way to specify that the litters are the EUs is to treat litter as a random effect. When the data are
balanced, meaning that each litter has the same number of observations, this analysis is equivalent to model
m2.

m3 <- lme(act ~ group, random=~1|litter, data=d)
anova(m3)

numDF denDF F-value p-value
(Intercept) 1 6 521.500 <.0001
group 1 4 4.967 0.0897

The p-value is the same as model m2 (slight differences are due to rounding), and the residual df is also 4
(shown in the denDF column).

Analysis 4: No pseudoreplication, average multiple observations on
each EU

The simplest way to analyse such data is to reduce the data so that there is only one value per EU. Here,
the average of the two offspring in each litter is calculated. This approach is called a summary measure or
derived variable analysis.

# Reduce data by calculating litter average
d2 <- group_by(d, litter) %>%

summarise(group=unique(group), act = mean(act)) %>%
as.data.frame()

d2
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litter group act
1 C SAL 5.88500
2 D SAL 7.35600
3 E SAL 5.91365
4 H VPA 4.94225
5 I VPA 5.42230
6 J VPA 5.38390

par(las=1)
beeswarm::beeswarm(act ~ group, data=d2, ylim=c(2,10),

pwpch=as.numeric(group), pwcol=as.numeric(group),
ylab="Activity (x10000)", xlab="Group")
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The analysis is now equivalent to a t-test, but using the aov() function makes the output consistent with the
previous analyses.

m4 <- aov(act ~ group, data=d2)
summary(m4)

Df Sum Sq Mean Sq F value Pr(>F)
group 1 1.93 1.934 4.97 0.09
Residuals 4 1.56 0.389

Once again, we get the same p-value (0.09) and the correct dfs. Averaging multiple observations on each EU
won’t always give the same results as a mixed effects model (model m3), but it occurred here because the
number of observations was the same for each EU.

Analysis 5: Bayesian analysis with pseudoreplication

The question of “what is N?” is relevant to both classical frequentist statistics as we showed above, but also
to Bayesian methods (Bayesian methods are not discussed here but Kruschke [2] and McElreath [3] provide
excellent introductions). Below we fit a model by incorrectly treating all 12 offspring as the EUs; this is the
Bayesian equivalent of model m1. The priors are chosen to be uninformative and so have little influence on
the results.
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m5 <- stan_glm(act ~ group, data=d, adapt_delta=0.99, iter=20000,
prior = normal(0, 20), prior_intercept = normal(5.82, 20),
prior_aux = normal(0, 20))

summary(m5, pars="groupVPA", digits=3)

Model Info:

function: stan_glm
family: gaussian [identity]
formula: act ~ group
algorithm: sampling
priors: see help('prior_summary')
sample: 40000 (posterior sample size)
num obs: 12

Estimates:
mean sd 2.5% 25% 50% 75% 97.5%

groupVPA -1.141 0.549 -2.243 -1.482 -1.137 -0.799 -0.045

Diagnostics:
mcse Rhat n_eff

groupVPA 0.004 1.000 21073

For each parameter, mcse is Monte Carlo standard error, n_eff is a crude measure of effective sample size, and Rhat is the potential scale reduction factor on split chains (at convergence Rhat=1).

The above output shows (under the Estimates table) that the mean difference between the two groups is
-1.141 units, with a 95% CI from -2.243 to -0.045. Since the 95% CI does not include zero, we can (incorrectly)
conclude that there is an effect of VPA.

Analysis 6: Bayesian analysis without pseudoreplication

The summary measure analysis below uses the reduced data set, and the same priors as model m5. This
analysis is the Bayesian equivalent to model m4.

m6 <- stan_glm(act ~ group, data=d2, adapt_delta=0.99, iter=20000,
prior = normal(0, 20), prior_intercept = normal(5.82, 20),
prior_aux = normal(0, 20))

summary(m6, pars="groupVPA", digits=3)

Model Info:

function: stan_glm
family: gaussian [identity]
formula: act ~ group
algorithm: sampling
priors: see help('prior_summary')
sample: 40000 (posterior sample size)

5



num obs: 6

Estimates:
mean sd 2.5% 25% 50% 75% 97.5%

groupVPA -1.131 0.950 -2.999 -1.589 -1.133 -0.676 0.763

Diagnostics:
mcse Rhat n_eff

groupVPA 0.008 1.000 14525

For each parameter, mcse is Monte Carlo standard error, n_eff is a crude measure of effective sample size, and Rhat is the potential scale reduction factor on split chains (at convergence Rhat=1).

The mean difference is similar to model m5, but the 95% CI is now from -2.999 to 0.763. Since zero is included
in the interval, we would conclude that VPA has no effect (although Bayesians are unlikely to make hard
conclusions about effects being present or absent based on a fixed threshold). To better appreciate the
differences in the models, the posterior distributions are plotted below. The posterior distributions represent
the uncertainty in the effect of VPA, given the data. Model m5, which incorrectly uses a sample size of 12,
has an artificially narrower posterior distribution.

# extract draws from the posterior
post_m5 <- data.frame(m5)
post_m6 <- data.frame(m6)

par(mar=c(5,1,1,1))
plot(density(post_m5$groupVPA), xlim=c(-6.1, 4), main="", yaxt="n",

xlab="Difference between groups", ylab="")
lines(density(post_m6$groupVPA), lty=2, lwd=2, col="grey40")
abline(v=0, lty=2)

legend("topleft", lty=c(1,2), lwd=c(1,2), col=c("black","grey40"),
legend=c("m5 (N=12)", "m6 (N=6)"))
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